Polynomials over Galois Field

• Consider polynomials whose coefficients are taken from prime-order finite fields.

Primitive polynomials and Galois fields of order p^m

- Let GF(q)[x] denote the collection of all polynomials $a_0 + a_1x + a_2x^2 + \dots + a_nx^n$ of arbitrary degree with coefficients $\{a_i\}$ in the finite field GF(q).
 - $(a_0 + a_1x + a_2x^2 + \dots + a_nx^n) + (b_0 + b_1x + b_2x^2 + \dots + b_nx^n)$ = $(a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2 + \dots + (a_n + b_n)x^n$.

•
$$(a_0 + a_1x + a_2x^2 + \dots + a_nx^n) \cdot (b_0 + b_1x + b_2x^2 + \dots + b_mx^m)$$

= $(a_0 \cdot b_0) + [a_1 \cdot b_0 + a_0 \cdot b_1]x^1 + [a_2 \cdot b_0 + a_1 \cdot b_1 + a_0 \cdot b_2]x^2 + \dots + (a_n \cdot b_m)x^{n+m}$

The coefficient operations are performed using the operations for the field from which the coefficients were taken.

- Such a collection of polynomials forms a <u>commutative ring with identity</u>.
- Nonzero field elements are considered to be zero-degree polynomials.

The zero element, however, is not considered a polynomial at all, because most metrics used with Euclidean rings of polynomials are undefined for the zero element.

- Let α be a root of f(x). Then, $f(x)|x^n 1 \Rightarrow \operatorname{ord}(\alpha)|n$.
- A polynomial f(x) is <u>irreducible</u> in GF(q)[x] if f(x) cannot be factored into a product of <u>lower-degree</u> polynomials in GF(q)[x].
 - All of the roots have the same order.
 - The set of all roots of f(x) is one conjugacy class with respect to GF(q).
 - $f(x)|x^{\operatorname{ord}(\alpha)}-1$, where $\operatorname{ord}(\alpha)$ is the order of any root of f(x).
- A polynomial f(x) is <u>irreducible</u> in GF(q) if f(x) cannot be factored into a product of <u>lower-degree</u> polynomials in GF(q)[x].
 - A polynomial may be irreducible in one ring of polynomials, but reducible in another.
 - In fact, every polynomial is reducible in some ring of polynomials. The term irreducible must thus be used only with respect to a specific ring of polynomials.
 - <u>**Remark**</u>: In GF(2)[x], if f(x) has degree > 1 and has an even number of terms, then it can't be irreducible. Because 1 is its root, and hence x + 1 is one of its factor.
- Irreducible polynomials of degree *n* in GF(2)[*x*]

Degree	Irreducible polynomials
1	<i>x</i> , <i>x</i> +1
2	$x^2 + x + 1$
3	$x^3 + 0 + x + 1$,
	$x^3 + x^2 + 0 + 1$
4	$x^4 + 0 + 0 + x + 1$,
	$x^4 + x^3 + 0 + 0 + 1,$
	$x^4 + x^3 + x^2 + x + 1$
5	$x^5 + 0 + 0 + x^2 + 0 + 1,$
	$x^5 + 0 + x^3 + 0 + 0 + 1$,
	$x^5 + \underbrace{x^4 + x^3 + x^2 + x}_{x^2 + x} + 1$ where exactly one of
	the 4 middle terms is deleted.

- Any irreducible m^{th} -degree polynomial $f(x) \in GF(p)[x]$ must divide $x^{p^{m-1}} 1$.
- Remark for binary polynomials:
 - $x^{n+1} + 1 = (x+1) \left(\sum_{i=0}^{n} x^i \right)$

• For *n* odd,
$$\sum_{i=0}^{n} x^{i} = (x^{n} + x^{n-1}) + \dots + (x+1) = (x+1)(x^{n-1} + x^{n-3} + \dots + 1)$$
. It is

clear that (x+1) is a factor because $\sum_{i=0}^{n} x^{i} \Big|_{x=1} = 0$. Also, observe that

$$\sum_{i=0}^{2k+1} x^i = (x+1) \left(\sum_{i=0}^k x^{2i} \right).$$

- Binary polynomials that miss alternate terms are not irreducible
 - Lowest degree term is $x \Rightarrow x$ is a factor.
 - Lowest degree term is 1: $\sum_{i=0}^{k} x^{2k}$

•
$$x^{2} + 1 = (x+1)^{2}, x^{4} + x^{2} + 1 = (x^{2} + x + 1)^{2}. \left(\sum_{i=0}^{n} x^{i}\right)^{2} = \sum_{k=0}^{n} x^{2k}.$$

To see this, consider, $(x^{n+1}+1)^2 = (x+1)^2 \left(\sum_{i=0}^n x^i\right)^2$. Also, $(x^{n+1}+1)^2 = x^{2n+2} + 1 = (x+1) \left(\sum_{i=0}^{2n+1} x^i\right) = (x+1)^2 \left(\sum_{i=0}^n x^{2k}\right)$.

- $x^4 + \underline{x^3 + x^2 + x} + 1$ can't take just one of the middle terms because we left with even number of terms.
- $x^5 + x + 1 = (x^2 + x + 1)(x^3 + x^2 + 1)$
- All roots of an irreducible polynomial have the same order.

• Primitive polynomials: An irreducible polynomial $p(x) \in GF(p)[x]$ of degree *m* is said to be <u>primitive</u> if $\min_{n \in \mathbb{N}} \{n : p(x) | x^n - 1\} = p^m - 1$.

• There are
$$\frac{\phi(2^n-1)}{n}$$
 binary primitive polynomials of degree *n*.

- Primitive polynomials: An irreducible polynomial p(x) ∈ GF(p)[x] of degree m is said to be primitive if min_{n∈N} {n: p(x)|xⁿ −1} = p^m −1.
 - There are $\frac{\phi(2^n-1)}{n}$ binary primitive polynomials of degree *n*.
 - Given an irreducible polynomial of degree *m*, to test whether it is primitive, divide it from xⁿ −1 where m < n < p^m −1. If no such n gives 0 remainder, then it is primitive. (The case when n = p^m − 1 is guaranteed to have 0 remainder.). If there exists n, m < n < p^m −1, such that the remainder is not 0, then it is not primitive.
 - Primitive polynomials are the <u>minimal polynomials for primitive elements</u> in a Galois field.
- Primitive polynomials of degree *n* in GF(2)[*x*]

Degree	Primitive polynomials
2	$x^2 + x + 1$
3	$x^3 + 0 + x + 1$,
	$x^3 + x^2 + 0 + 1$
4	$x^4 + 0 + 0 + x + 1$,
	$x^4 + x^3 + 0 + 0 + 1$
5	$x^5 + 0 + 0 + x^2 + 0 + 1,$
	$x^5 + 0 + x^3 + 0 + 0 + 1$,
	$x^5 + \underbrace{x^4 + x^3 + x^2 + x}_{x^2 + x} + 1$ where exactly one of
	the 4 middle terms is deleted.

• Remark:

- A primitive polynomial $p(x) \in GF(p)[x]$ is always irreducible in GF(p)[x] (by definition), but irreducible polynomials are not always primitive.
- All irreducible polynomials in GF(2)[x] of degree 2, 3, 5 are primitive.
- $x^4 + x^3 + x^2 + x + 1$ is irreducible but not primitive in GF(2)[x]. $\min_{n \in \mathbb{N}} \{n : x^4 + x^3 + x^2 + x + 1 | x^n - 1\} = 5.$
- The root α of an m^{th} -degree primitive polynomial $p(x) \in GF(p)[x]$
 - Is also be a root of $x^{p^m-1}-1$
 - have order $p^m 1$. (and hence, is a primitive element in $GF(p^m)$)
 - $p^m 1$ consecutive powers of α form a multiplicative group of order $p^m 1$.
- Let α be a nonzero root of f(x). Then, $f(x)|x^n 1 \Rightarrow \operatorname{ord}(\alpha)|n$.

Proof. Because α be a root of f(x), we have $f(\alpha) = 0$. Because $f(x)|x^n - 1$, we also have $\alpha^n - 1 = 0$. Recall that $\alpha^n = 1 \Leftrightarrow \operatorname{ord}(\alpha)|n$.

• Let α_i 's be roots of an irreducible polynomial f(x), then $f(x)|x^{\operatorname{ord}(\alpha)} - 1$, where $\operatorname{ord}(\alpha)$ is the order of any root of f(x).

Proof. Because all roots of an irreducible polynomial have the same order, $\forall i (\alpha_i)^{\operatorname{ord}(\alpha)} = 1$. So, all roots of f(x) are also roots of $x^{\operatorname{ord}(\alpha)} - 1$.

- If α is a root of an m^{th} -degree primitive polynomial $p(x) \in GF(p)[x]$, then
 - α must also be a root of $x^{p^m-1}-1$ and $\operatorname{ord}(\alpha)|p^m-1$.

Proof. By definition, $p(x)|x^{p^m-1}-1$.

• Let β be any root of $x^{\operatorname{ord}(\alpha)} - 1$, then β is a root of $x^{p^m - 1} - 1$.

Proof. We have $\beta^{\operatorname{ord}(\alpha)} = 1$. Next, note that $\beta^{p^m-1} = (\beta^{\operatorname{ord}(\alpha)})^k$ where $k \in \mathbb{N}$ because $\operatorname{ord}(\alpha) | p^m - 1$. Hence, $\beta^{p^m-1} = 1^k = 1$.

•
$$x^{\operatorname{ord}(\alpha)} - 1 | x^{p^m - 1} - 1$$

Proof. Because all roots of $x^{\operatorname{ord}(\alpha)} - 1$ are the roots of $x^{p^m-1} - 1$.

• The root α of an m^{th} -degree primitive polynomial $p(x) \in \text{GF}(p)[x]$ have order $p^m - 1$. (and hence, is a primitive element in $\text{GF}(p^m)$)

- Proof. Let α be an arbitrary root of p(x). We know that $x^{\operatorname{ord}(\alpha)} 1 | x^{p^m 1} 1$. We also have $p(x) | x^{\operatorname{ord}(\alpha)} 1$ because p(x) is irreducible. Because p(x) is primitive, $p^m 1 = \min_{n \in \mathbb{N}} \{n : p(x) | x^n 1\}$. So, $\operatorname{ord}(\alpha) \ge p^m 1$. But from $x^{\operatorname{ord}(\alpha)} 1 | x^{p^m 1} 1$, we have $\operatorname{ord}(\alpha) \le p^m 1$. So, $\operatorname{ord}(\alpha) = p^m 1$.
- Given that α has order p^m-1, then the p^m-1 consecutive powers of α form a multiplicative group of order p^m-1.
 The multiplication operation is performed by adding the exponents of the powers.

The multiplication operation is performed by adding the exponents of the powers of α modulo $(p^m - 1)$.

• Let $p(x) = x^m + a_{m-1}x^{m-1} + \dots + a_1x + a_0$ be primitive in GF(p)[x]. If α is a root of p(x), it must satisfy $p(\alpha) = \alpha^m + a_{m-1}\alpha^{m-1} + \dots + a_1\alpha + a_0 = 0$. It follows that $\alpha^m = (-a_{m-1})\alpha^{m-1} + \dots + (-a_1)\alpha + (-a_0)1.$

The individual powers of α of degree greater than or equal to *m* can be reexpressed as polynomials in α of degree (m - 1) or less.

Since $\operatorname{ord}(\alpha) = p^m - 1$, the distinct powers of α must have $p^m - 1$ distinct nonzero polynomial representations of the form $b_{m-1}\alpha^{m-1} + \dots + b_1\alpha + b_0$. The coefficients $\{b_i\}$ are taken from $\operatorname{GF}(p)$. So, there are $p^m - 1$ distinct nonzero polynomial representations available. A bijective mapping is then defined between the distinct powers of α and the set of polynomials in α of degree less than or equal to (m-1) with coefficients in $\operatorname{GF}(p)$.

• **<u>Construction</u>** of $GF(p^m)$:

Let α be a root of an m^{th} -degree primitive polynomial $p(x) \in \text{GF}(p)[x]$. Then ord $(\alpha) = p^m - 1$ and the $p^m - 1$ consecutive powers of $\alpha (\alpha^0, \alpha^1, \dots, \alpha^{\operatorname{ord}(\alpha)-1})$ are the nonzero elements of the field $\text{GF}(p^m)$. Also, can express any power of α (exponential representation) (or even any polynomials in α) as $b_{m-1}\alpha^{m-1} + \dots + b_1\alpha + b_0$ (polynomial representation).

- $\operatorname{ord}(\alpha^{i}) = \frac{q-1}{\operatorname{gcd}(i,q-1)}, \ q = p^{m}.$
- Construction of $GF(p^m)$:

Let α be a root of an m^{th} -degree primitive polynomial $p(x) \in GF(p)[x]$. Then

•
$$\operatorname{ord}(\alpha) = p^m - 1.$$

- The $p^m 1$ consecutive powers of $\alpha \left(\alpha^0, \alpha^1, \dots, \alpha^{\operatorname{ord}(\alpha) 1} \right)$ are the nonzero elements of the field $\operatorname{GF}(p^m)$.
- Can express $\alpha^m = (-a_{m-1})\alpha^{m-1} + \dots + (-a_1)\alpha + (-a_0)1$. \Rightarrow Can express any power of α (exponential representation) (or even any polynomials in α) as $b_{m-1}\alpha^{m-1} + \dots + b_1\alpha + b_0$ (polynomial representation).
- Can define bijective mapping between the distinct powers of α and the set of nonzero polynomials in α of degree less than or equal to (m 1) with coefficients in GF(*p*).
- Addition is performed using the polynomial representation. One begins by substituting the polynomial representations for the exponential representations. The polynomials are then summed to obtain a third polynomial representation, which may then be reexpressed as a power of α .
- Multiplication is performed through the use of exponential representation. The exponents of the two elements being multiplied together are added together modulo $p^m 1$.
- Multiplication can also be performed through the polynomial representation. If α^a and α^b have the polynomial representations $p_a(\alpha)$ and $p_b(\alpha)$, respectively,

then $\alpha^{(a+b) \mod (p^m-1)}$ has polynomial representation $p_a(\alpha) p_b(\alpha)$ modulo $p(\alpha)$.

- The polynomial representation for a finite field GF(p^m) has coefficients in the "ground field" GF(p). Clearly GF(p^m) can thus be interpreted as a vector space over GF(p). The set {1,α,...,α^{m-1}} can be used as a basis for the vector space.
- Let $\beta \in \operatorname{GF}(2^m)$, then $-\beta = \beta$.
 - Proof. $\beta + \beta = \beta(1+1)$. Note that $1 \in GF(2)$, hence 1+1=0. Therefore, $\beta + \beta = \beta 0 = 0$.

Zech's logarithms

- Except in the prime-order field case, GF(q) addition is not as easy to implement as multiplication. The simplest (though least efficient) approach is to construct a (q × q) look-up table. A more efficient use of memory can be obtained through the use of Zech's logarithms, also known as "add-one tables."
- An add-one tables has two columns:

The first contains the logarithm of each element with respect to a primitive element α . $(\log_{\alpha}(x))$

The second column contains the logarithm to the base α of the corresponding element in the first column after it has been incremented by one. $(\log_{\alpha}(x+1))$

- * \rightarrow 0: $\log_{\alpha} 0 =$ *. $\log_{\alpha} (0+1) = \log_{\alpha} 1 = 0$. In $GF(2^{m}): 0 \leftrightarrow$ *. (1 + 1 = 0)
- $\log_{\alpha} \alpha^{i} \equiv i \mod \operatorname{ord}(\alpha)$
- Check:
 - For $GF(2^m)$, note that $\alpha^j + 1 = \alpha^k \Leftrightarrow \alpha^k + 1 = \alpha^j$ because -1 = 1. So, also works in pair $j \leftrightarrow k$.
 - We stop at α^{q-2} . But can check by calculate whether $\alpha \alpha^{q-2} = \alpha^{q-1} = 1$.
- Addition in $GF(p^m)$ is then performed using the following scheme:
 - Combine all terms that have the same exponent using modular addition of the exponents (i.e., GF(p) addition of the "coefficients")
 - Arrange the resulting expression $\alpha^a + \alpha^b + \dots + \alpha^z$ in order of decreasing exponents.
 - Factor the expression into the form $\left(\cdots\left(\left(\left(\alpha^{a-b}+1\right)\alpha^{b-c}+1\right)\alpha^{c-d}+1\right)\cdots\right)\alpha^{z}\right)$.

The summation can now be performed as a series of add-one operations and Galois field multiplications.

•
$$\alpha^{a} + \alpha^{b} + \alpha^{c} + \alpha^{d} = (\alpha^{a-b} + 1)\alpha^{b} + \alpha^{c} + \alpha^{d} = ((\alpha^{a-b} + 1)\alpha^{b-c} + 1)\alpha^{c} + \alpha^{d}$$

= $(((\alpha^{a-b} + 1)\alpha^{b-c} + 1)\alpha^{c-d} + 1)\alpha^{d}$

•
$$\alpha^{a} + \alpha^{b} + \alpha^{c} + 1 = ((\alpha^{a-b} + 1)\alpha^{b-c} + 1)\alpha^{c-d} + 1$$

• **Example**: The construction of GF(4) Because $4 = 2^2$, we seek a primitive polynomial in GF(2)[x] of degree 2. Let $p(x) = x^2 + x + 1$. Let α be a root of p(x). This implies that $ord(\alpha) = 3$ and $\alpha^2 + \alpha + 1 = 0$, i.e., $\alpha^2 = \alpha + 1$. Then,

Exp. Rep.	Poly. Rep.	Vector-space Rep. $(1, \alpha)$	Order	$\log_{\alpha}(x)$	$\log_{\alpha}(x+1)$
α^{0}	1	(1, 0)	1	0	*
α^1	α	(0, 1)	3	1	2
α^2	α +1	(1, 1)	3	2	1
0	0	(0, 0)	-	*	0

• **<u>Example</u>**: The construction of GF(8)

Because $8 = 2^3$, we seek a primitive polynomial in GF(2)[x] of degree 3. Let $p(x) = x^3 + x + 1$. Let α be a root of p(x). This implies that $ord(\alpha) = 7$ and $\alpha^3 + \alpha + 1 = 0$, i.e., $\alpha^3 = \alpha + 1$. Then,

$lpha^4$	$\alpha^4 = \alpha^3 \cdot \alpha = \alpha^2 + \alpha$						
α^{5}	$= \alpha^4 \cdot \alpha$	$\alpha = \alpha^3 + \alpha^2 =$	$= \alpha + 1 + \alpha^2$				
α^{6}	$= \alpha^5 \cdot \alpha$	$\alpha = \alpha^3 + \alpha^2 + $	$-\alpha = \alpha + 1 + \alpha^2$	$+\alpha = \alpha$	$^{2}+1.$		
	Exp. Rep.	Poly. Rep.	Vector-space Rep. $(1, \alpha, \alpha^2)$	Order	$\log_{\alpha}(x)$	$\log_{\alpha}(x+1)$	
	α^{0}	1	(1, 0, 0)	1	0	*	
	α^{1}	α	(0, 1, 0)	7	1	3	
	α^2	$lpha^2$	(0, 0, 1)	7	2	6	
	α^{3}	$1 + \alpha$	(1, 1, 0)	7	3	1	
	$lpha^{4}$	$\alpha + \alpha^2$	(0, 1, 1)	7	4	5	
	α^{5}	$1 + \alpha + \alpha^2$	(1, 1, 1)	7	5	4	
	α^{6}	$1+\alpha^2$	(1, 0, 1)	7	6	2	
	0	0	(0, 0, 0)	-	*	0	

Note also that α is a primitive element in $GF(2^3) = GF(8)$. $\alpha^7 = 1$.

• **<u>Example</u>**: The construction of GF(8)

Let $p(x) = x^3 + x^2 + 1$. Let α be a root of p(x). This implies that $\operatorname{ord}(\alpha) = 7$ and $\alpha^3 = \alpha^2 + 1$.

Exp. Rep.	Poly. Rep.	Order	$\log_{\alpha}(x)$	$\log_{\alpha}(x+1)$
α^{0}	1	1	0	*
α^{1}	α	7	1	5
α^2	α^2	7	2	3
α^{3}	α^2 + 1	7	3	2
α^4	$\alpha^2 + \alpha + 1$	7	4	6
α^{5}	α +1	7	5	1
α^{6}	$\alpha^2 + \alpha$	7	6	4
0	0	-	*	0

Note also that α is a primitive element in $GF(2^3) = GF(8)$. $\alpha^7 = 1$.

• **Example**: The construction of GF(16)

Let
$$p(x) = x^4 + x + 1$$
.

Exp. Rep.	Poly. Rep.	Vector-space Rep. $(1, \alpha, \alpha^2, \alpha^3)$	Order	$\log_{\alpha}(x)$	$\log_{\alpha}(x+1)$
0	0	(0, 0, 0, 0)	_	*	0
α^{0}	1	(1, 0, 0, 0)	1	0	*
α^{1}	α	(0, 1, 0, 0)	15	1	4

α^2	$lpha^2$	(0, 0, 1, 0)	15	2	8
α^{3}	α^{3}	(0, 0, 0, 1)	5	3	14
α^4	α + 1	(1, 1, 0, 0)	15	4	1
α^{5}	$\alpha^2 + \alpha$	(0, 1, 1, 0)	3	5	10
α^{6}	$\alpha^3 + \alpha^2$	(0, 0, 1, 1)	5	6	13
α^7	$\alpha^3 + \alpha + 1$	(1, 1, 0, 1)	15	7	9
α^{8}	$\alpha^2 + 1$	(1, 0, 1, 0)	15	8	2
α^9	$\alpha^3 + \alpha$	(0, 1, 0, 1)	5	9	7
$lpha^{10}$	$\alpha^2 + \alpha + 1$	(1, 1, 1, 0)	3	10	5
α^{11}	$\alpha^3 + \alpha^2 + \alpha$	(0, 1, 1, 1)	15	11	12
α^{12}	$\alpha^3 + \alpha^2 + \alpha + 1$	(1, 1, 1, 1)	5	12	11
α^{13}	$\alpha^3 + \alpha^2 + 1$	(1, 0, 1, 1)	15	13	6
$\alpha^{^{14}}$	$\alpha^3 + 1$	(1, 0, 0, 1)	15	14	3

Remark: the order is easily find by $\operatorname{ord}(\alpha^k) = \frac{15}{\operatorname{gcd}(k,15)}$.

This follows from a theorem, or can be intuitively shown here as follows: Consider, for example, α^9 . We want to find $\min_i \left\{ \left(\alpha^9 \right)^i = 1 \right\}$. This happens iff $9i \equiv 0 \mod 15$ i.e. 15|9i. But $3 = \gcd(15,9)$ which is a factor of 9 already divide 15. So we only need $5 = \frac{15}{\gcd(15,9)}$ to divide *i*. The minimum of *i* for this to occur is i = 5.

In this representation, the nonzero elements α^{i} which are also in GF(4) is the elements which satisfy $3i \equiv 0 \mod 15$, i.e., 15|3i. So, they are $\alpha^{0}, \alpha^{5}, \alpha^{10}$. Hence, GF(4) = {0,1, α^{5}, α^{10} }.

Euclidean Domains

- A Euclidean domain is a set *D* with two binary operations "+" and "." that satisfy the following:
 - 1. *D* forms a commutative <u>ring</u> with identity.
 - 2. Cancellation: if ab = bc, $b \neq 0$, then a = c.
 - 3. Every element $a \in D$ has an associated metric g(a) such that
 - a) $g(a) \le g(a \cdot b)$ for all nonzero $b \in D$.
 - b) For all nonzero $a, b \in D$, g(a) > g(b), there exist q and r such that a = qb + r with r = 0 or g(r) < g(b).
 - *q* is called the <u>**quotient**</u> and *r* the <u>**remainder**</u>.

- g(0) is generally taken to be undefined, though a value of -∞ can be assigned if desired.
- Examples of Euclidean Domains
 - The ring of integers under addition and multiplication with metric g(n) = |n| (absolute value).
 - GF(q)[x]: the ring of polynomials over a finite field with metric g(f(x)) = degree(f(x)).
- *a* is said to be a <u>divisor</u> of *b* (written a|b) if there exists $c \in D$ such that $a \cdot c = b$.
- An element *a* is said to be a <u>common divisor</u> of a collection of elements $\{b_1, b_2, ..., b_n\}$ if $a|b_i$ for i = 1, ..., n.
- If *d* is a common divisor of the {*b_i*} and all other common divisors are less than *d*, then *d* is called the greatest common divisor (GCD) of the {*b_i*}.
 - $g = gcd(a,b) \Leftrightarrow g$ is a common divisor of a and b, and $\forall d$ common divisor of a and b, d|g.

Euclid's Algorithm

- Euclid's algorithm is a very fast method for finding the GCDs of sets of elements in Euclidean domains.
- Euclid's Algorithm:

Let *a*, *b* be a pair of elements contained in a Euclidean domain *D*, where g(a) > g(b)Let the indexed variable r_i take on the initial values $r_{-1} = a$ and $r_0 = b$. Proceed by using the following recursion formula

If $r_{i-1} \neq 0$, the define r_i using $r_{i-2} - q_i r_{i-1} = r_i$ where $g(r_i) < g(r_{i-1})$.

Repeat until $r_i = 0$.

If $r_i = 0$, then $r_{i-1} = \text{GCD}(a, b)$.

• Recursive system of equations:

	1
$a = q_1 b + r_1$	$0 < r_1 < b$
$b = q_2 r_1 + r_2$	$0 < r_2 < r_1$
$r_1 = q_3 r_2 + r_3$	$0 < r_3 < r_2$
:	:
$r_{n-2} = q_n r_{n-1} + r_n$	$0 < r_n < r_{n-1}$

 $\operatorname{GCD}(a,b)=r_n$.

• Example

• $D^m + 1 = (D+1)(D^{m-1} + D^{m-2} + \dots + D + 1).$

• In a Euclidean domain, the remainder *r_i* will always take on the value zero after a finite number of steps.

The worst case: Euclid's algorithm requires a maximal number of steps to complete when a and b are consecutive Fibonacci numbers.

- $\operatorname{GCD}(a,b,c) = \operatorname{GCD}(\operatorname{GCD}(a,b),c).$
- If $B = \{b_1, b_2, \dots, b_n\}$ is any finite subset of elements from a Euclidean domain *D*, then *B* has a GCD *d* which can be expressed as a linear combination $\sum_k \lambda_k b_k$, where the

coefficients $\{\lambda_i\} \subset D$.

<u>The extended Version of Euclid's Algorithm</u>

•
$$r_{i-2} = q_i r_{i-1} + r_i \iff r_i = r_{i-2} - q_i r_{i-1} g(r_i) < g(r_{i-1})$$

•
$$s_i = s_{i-2} - q_i s_{i-1}, t_i = t_{i-2} - q_i t_{i-1}.$$

i	r _i	q_i	Si	t _i
-1	а	-	1	0
0	b	-	0	1
1	r_1	q_1	1	$-q_1$
2				
	$\operatorname{GCD}(a,b)$		S	t
	0			

- Check: GCD(a,b) = sa + tb.
- Check: for all j, $s_j a + t_j b = r_j$.

- The extended Version of Euclid's Algorithm
 We wish to find *s* and *t* such that GCD(*a*,*b*) = *sa* + *tb*.
 - 1. A set of indexed variables $\{r_i, s_i, t_i\}$ is given the following initial conditions: $r_{-1} = a$, $r_0 = b$, $s_{-1} = 1$, $s_0 = 0$, $t_{-1} = 0$, $t_0 = 1$.
 - 2. If $r_{i-1} \neq 0$, then define r_i using $r_i = r_{i-2} q_i r_{i-1}$, $g(r_i) < g(r_{i-1})$.
 - 3. Compute s_i using $s_{i-2} q_i s_{i-1}$, where q_i is from step 2.
 - 4. Compute t_i using $t_i = t_{i-2} q_i t_{i-1}$.
 - 5. Repeat steps 2 through 4 until $r_i = 0$.

At this point
$$r_{i-1} = \text{GCD}(a,b)$$
 and $s_{i-1}a + t_{i-1}b = r_{i-1}$.

i	<i>r</i> _i	q_i	Si	t_i	
-1	а	-	1	0	
0	b	-	0	1	
1	r_1	q_1	1	$-q_1$	
2					

- Remark:
 - for all j, $s_i a + t_i b = r_i$.

•
$$a = bq_1 + r_1$$
, $s_1 = s_{-1} - q_1s_0 = 1 - q_10 = 1$, $t_1 = t_{-1} - q_1t_0 = 0 - q_11 = -q_1$.

- Observe that the initial conditions for s_i and t_i is the identity matrix $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.
- If $B = \{b_1, b_2, \dots, b_n\}$ is any finite subset from a Euclidean domain *D*, then *B* has a gcd

d which can be expressed as a linear combination $\sum \lambda_k b_k$ where the coefficients

$$\{\lambda_i\}\subset D$$

Proof. Let $S = \{\sum \lambda_k b_k : \{\lambda_i\} \subset D\}$. Let *d* be the element in *S* with the smallest metric (g(d)). By definition, $d \in S \Rightarrow d = \sum \lambda_i b_i$. We will show that *d* is the GCD of the elements in *B*. If *d* does not divide some element $b_i \in B$, then we can write $b_i = qd + r$

where g(r) < g(d). But $r = b_i - qd$ must be in *S*, since b_i and *d* are in *S*. This contradicts the minimality of the metric of *d* in *S*. Thus, *d* is a common divisor of all the elements in *B*. Now let *e* by any other common divisor of the elements in *B*. We can then write $b_i = q'_i e$ for each $b_i \in B$. Then, $d = \sum \lambda_i b_i = \sum \lambda_i q'_i e = e \sum \lambda_i q'_i$. So, *d* is a multiple of every common divisor and thus the GCD of all of the elements in *B*.

• Let *D* be a Euclidean domain. Suppose that for $a, b, c \in D$, a|(bc), but *a* and *b* are relatively prime. Show that a|c.

Proof.
$$gcd(a,b) = 1 \Rightarrow \exists s,t \in D sa + tb = 1$$
. $a|(bc) \Rightarrow bc = aq$ for some $q \in D$. $sa + tb = 1 \Rightarrow sac + tbc = c \Rightarrow sac + taq = c \Rightarrow a(sc + tq) = c$.

- All finite Euclidean domains are fields.
 - Proof. *D* forms a commutative <u>ring</u> with identity. Hence, only need to show the existence of unique multiplicative inverse. Let $x \in D$. |D| is finite; hence, the sequence x, x^2, x^3, \ldots must repeat. $\Rightarrow \exists p, q \ q > p$ such that $x^p = x^q$ $\Rightarrow x^p = x^p (x^{q-p}) \Rightarrow$ by cancellation, $x^{q-p} = 1 \Rightarrow x (x^{q-p-1}) = 1$, thus *x* has an inverse.
- **Example**: GCD(256,108)

r _i	q_i	Si	t_i
256	-	1	0
108	-	0	1
140	2	1	-2
28	2	-2	5
12	1	3	-7
4	2	-8	19
0			

GCD(256,108) = 4 = 256(-8) + 108(19)

• **<u>Examples</u>**: GCD $(x^5 + x^3 + x + 1, x^4 + x^2 + x + 1)$

r _i	q_i	Si	t_i
$x^{5} + x^{3} + x + 1$	-	1	0
$x^4 + x^2 + x + 1$	-	0	1
$x^{2} + 1$	x	1	X
<i>x</i> +1	x^2	x^2	$x^3 + 1$
0			

$$GCD(x^{5} + x^{3} + x + 1, x^{4} + x^{2} + x + 1) = x + 1$$

= $x^{2}(x^{5} + x^{3} + x + 1) + (x^{3} + 1)(x^{4} + x^{2} + x + 1)$