
Polynomials over Galois Field 
• Consider polynomials whose coefficients are taken from prime-order finite fields. 

Primitive polynomials and Galois fields of order pm 

• Let ( )[ ]GF q x  denote the collection of all polynomials  of 

arbitrary degree with coefficients 
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The coefficient operations are performed using the operations for the field from 
which the coefficients were taken. 
• Such a collection of polynomials forms a commutative ring with identity. 
• Nonzero field elements are considered to be zero-degree polynomials. 

The zero element, however, is not considered a polynomial at all, because most 
metrics used with Euclidean rings of polynomials are undefined for the zero 
element. 

• Let α be a root of f(x). Then, ( ) ( )1 ordnf x x nα− ⇒ . 

• A polynomial f(x) is irreducible in ( )[ ]GF q x  if f(x) cannot be factored into a 

product of lower-degree polynomials in ( )[ ]GF q x . 

• All of the roots have the same order. 
• The set of all roots of ( )f x  is one conjugacy class with respect to . ( )GF q

• ( ) ( )ord 1f x x α − , where ( )ord α  is the order of any root of f(x). 

• A polynomial f(x) is irreducible in ( )GF q  if f(x) cannot be factored into a product of 

lower-degree polynomials in ( )[ ]GF q x . 

• A polynomial may be irreducible in one ring of polynomials, but reducible in 
another.  

• In fact, every polynomial is reducible in some ring of polynomials. The term 
irreducible must thus be used only with respect to a specific ring of polynomials. 

• Remark: In ( )[ ]GF 2 x , if f(x) has degree > 1 and has an even number of terms, 
then it can’t be irreducible. Because 1 is its root, and hence x + 1 is one of its 
factor. 

• Irreducible polynomials of degree n in GF(2)[x] 
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• Any irreducible mth-degree polynomial ( ) ( )[ ]GFf x p∈ x 1 1
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• Binary polynomials that miss alternate terms are not irreducible 
• Lowest degree term is x ⇒ x is a factor. 

• Lowest degree term is 1: 2
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• 4 3 2 1x x x x+ + + +  can’t take just one of the middle terms because we left with 

even number of terms. 

• ( )( )5 2 31 1x x x x x x+ + = + + + +2 1  

• All roots of an irreducible polynomial have the same order. 

• Primitive polynomials: An irreducible polynomial ( ) ( )[ ]GFp x p∈ x  of degree m is 

said to be primitive if ( ){ }min : 1n

n
n p x x

∈
−  = 1mp − . 

• There are 
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 binary primitive polynomials of degree n. 

• Primitive polynomials: An irreducible polynomial ( ) ( )[ ]GFp x p∈ x  of degree m is 

said to be primitive if ( ){ }min : 1n

n
n p x x

∈
−  = 1mp − . 

• There are 
( )2 1n

n
φ −

 binary primitive polynomials of degree n. 

• Given an irreducible polynomial of degree m, to test whether it is primitive, 
divide it from  where 1nx − 1mm n p< < − . If no such n gives 0 remainder, then it 
is primitive. (The case when n = pm – 1 is guaranteed to have 0 remainder.). If 
there exists n, , such that the remainder is not 0, then it is 1mm n p< < − not 
primitive. 

• Primitive polynomials are the minimal polynomials for primitive elements in a 
Galois field. 

• Primitive polynomials of degree n in GF(2)[x] 

Degree Primitive polynomials 
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5 4 3 2 1x x x x x+ + + + +  where exactly one of 

the 4 middle terms is deleted. 

• Remark: 



• A primitive polynomial ( ) ( )[ ]GFp x p∈ x  is always irreducible in ( )[ ]GF p x  (by 
definition), but irreducible polynomials are not always primitive. 

• All irreducible polynomials in ( )[ ]GF 2 x  of degree 2, 3, 5 are primitive. 

• 4 3 2 1x x x x+ + + +  is irreducible but not primitive in ( )[ ]GF 2 x . 

{ }4 3 2min : 1 1 5n
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∈
+ + + + − = .  

• The root α of an mth-degree primitive polynomial ( ) ( )[ ]GFp x p∈ x  

• Is also be a root of 1 1
mpx − −  

• have order . (and hence, is a primitive element in 1mp − ( )GF mp ) 

•  consecutive powers of α form a multiplicative group of order . 1mp − 1mp −

• Let α be a nonzero root of f(x). Then, ( ) ( )1 ordnf x x nα− ⇒ . 

Proof. Because α be a root of f(x), we have ( ) 0f α = . Because ( ) 1nf x x − , we 

also have . Recall that 1 0nα − = ( )1 ordn nα α= ⇔ . 

• Let iα ’s be roots of an irreducible polynomial f(x), then ( ) ( )ord 1f x x α − , where 

( )ord α  is the order of any root of f(x). 

Proof. Because all roots of an irreducible polynomial have the same order,  i∀
( ) ( )ord 1i

αα = . So, all roots of f(x) are also roots of ( )ord 1x α − . 

• If α  is a root of an mth-degree primitive polynomial ( ) ( )[ ]GFp x p∈ x , then  

• α must also be a root of 1 1
mpx − −  and ( )ord 1mpα − . 

Proof. By definition, ( ) 1 1
mpp x x − − . 

• Let β be any root of ( )ord 1x α − , then β is a root of 1 1
mpx − − . 

Proof. We have ( )ord 1αβ = . Next, note that ( )( )ord1m k
p αβ β− =  where  

because 
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( )ord 1mpα − . Hence, 1 1 1
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• ( )ord 11 1
mpx xα −− −  

Proof. Because all roots of ( )ord 1x α −  are the roots of . 1 1
mpx − −

• The root α of an mth-degree primitive polynomial ( ) ( )[ ]GFp x p∈ x  have order 

. (and hence, is a primitive element in 1mp − ( )GF mp ) 



Proof. Let α be an arbitrary root of ( )p x . We know that ( )ord 11 1
mpx xα −− − . We 

also have ( ) ( )ord 1p x x α −  because p(x) is irreducible. Because p(x) is 

primitive,  = 1mp − ( ){ }min : 1n

n
n p x x

∈
−  . So, ( )ord 1mpα ≥ − . But from 

( )ord 11
mpx xα −− 1− , we have ( )ord 1mpα ≤ − . So, ( )ord 1mpα = − . 

• Given that α  has order , then the 1mp − 1mp −  consecutive powers of α form a 
multiplicative group of order 1mp − .  

The multiplication operation is performed by adding the exponents of the powers of α 
modulo . ( )1mp −

• Let ( ) 1
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The individual powers of α of degree greater than or equal to m can be reexpressed as 
polynomials in α of degree (m – 1) or less. 
Since , the distinct powers of α must have ( )ord 1mpα = − 1mp −  distinct nonzero 

polynomial representations of the form 1
1 1

m
mb bα α−
− 0b+ + + . The coefficients { }ib  

are taken from ( )GF p . So, there are 1mp −  distinct nonzero polynomial 
representations available. A bijective mapping is then defined between the distinct 
powers of α and the set of polynomials in α of degree less than or equal to (m – 1) 
with coefficients in GF(p). 

• Construction of ( )GF mp : 

Let α be a root of an mth-degree primitive polynomial ( ) ( )[ ]GFp x p∈ x . Then 

( )ord 1mpα = −  and the 1mp −  consecutive powers of α ( )( )ord 10 1, , , αα α α −…  are the 

nonzero elements of the field ( )GF mp . Also, can express any power of α 

(exponential representation) (or even any polynomials in α) as 
1
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− + + + 0b  (polynomial representation). 
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• Construction of ( )GF mp : 

Let α be a root of an mth-degree primitive polynomial ( ) ( )[ ]GFp x p∈ x . Then 

• . ( )ord 1mpα = −



• The  consecutive powers of α 1mp − ( )( )ord 10 1, , , αα α α −…  are the nonzero 

elements of the field ( )GF mp . 

• Can express ( ) ( ) ( )1
1 1 1m m

ma aα α α−
−= − + + − + − 0a

0b

. ⇒ Can express any power 
of α (exponential representation) (or even any polynomials in α) as 

 (polynomial representation). 1
1 1

m
mb bα α−
− + + +

• Can define bijective mapping between the distinct powers of α and the set of 
nonzero polynomials in α of degree less than or equal to (m – 1) with coefficients 
in GF(p). 

• Addition is performed using the polynomial representation. One begins by 
substituting the polynomial representations for the exponential representations. 
The polynomials are then summed to obtain a third polynomial representation, 
which may then be reexpressed as a power of α. 

• Multiplication is performed through the use of exponential representation. The 
exponents of the two elements being multiplied together are added together 
modulo 1mp − . 

• Multiplication can also be performed through the polynomial representation. If 
aα  and bα  have the polynomial representations ( )ap α  and ( )bp α , respectively, 

then ( ) ( )mod 1ma b pα + −  has polynomial representation ( ) ( )a bp pα α  modulo ( )p α . 

• The polynomial representation for a finite field ( )GF mp  has coefficients in the 

“ground field” GF(p). Clearly ( )GF mp  can thus be interpreted as a vector space over 

( )GF p . The set { }11, , , mα α −…  can be used as a basis for the vector space. 

• Let , then ( )GF 2mβ ∈ β β− = .  

Proof. . Note that (1 1β β β+ = + ) ( )1 GF 2∈ , hence 1 1 0+ = . Therefore, 
0 0β β β+ = = . 

Zech’s logarithms 
• Except in the prime-order field case, GF(q) addition is not as easy to implement as 

multiplication. The simplest (though least efficient) approach is to construct a (q × q) 
look-up table. A more efficient use of memory can be obtained through the use of 
Zech’s logarithms, also known as “add-one tables.” 

• An add-one tables has two columns: 
The first contains the logarithm of each element with respect to a primitive element α. 

( )( )log xα  

The second column contains the logarithm to the base α of the corresponding element 
in the first column after it has been incremented by one. ( )( )log 1xα +  



• : lo . .  * 0→ g 0 *α = ( )log 0 1 log 1 0α α+ = =

In : 0 . (1 + 1 = 0) ( )GF 2m *↔

• ( )log modordi iα α α≡  

• Check: 

• For ( )GF 2m , note that 1 1j k k jα α α α+ = ⇔ + =  because 1 1− = . So, also works 
in pair . j k↔

• We stop at 2qα − . But can check by calculate whether 2 1 1q qαα α− −= = . 

• Addition in ( )GF mp  is then performed using the following scheme: 

• Combine all terms that have the same exponent using modular addition of the 
exponents (i.e., ( )GF p  addition of the “coefficients”) 

• Arrange the resulting expression a b zα α α+ + +  in order of decreasing 
exponents. 

• Factor the expression into the form ( )( )( )( )1 1 1a b b c c d zα α α− − −+ + + α . 

The summation can now be performed as a series of add-one operations and 
Galois field multiplications. 

• ( ) ( )( )
( )( )( )

1 1

1 1 1

a b c d a b b c d a b b c c

a b b c c d d

1 dα α α α α α α α α α α α

α α α α

− − −

− − −

+ + + = + + + = + + +

= + + +

 

•  ( )( )1 1 1a b c a b b c c dα α α α α α− − −+ + + = + + +1

• Example: The construction of GF(4) 
Because 4 = 22, we seek a primitive polynomial in GF(2)[x] of degree 2. Let 
( ) 2 1p x x x= + + . Let α  be a root of p(x). This implies that ( )ord 3α =  and 

, i.e., . Then, 2 1 0α α+ + = 2 1α α= +

Exp. 
Rep. 

Poly. 
Rep. 

Vector-space
Rep. 
( )1,α  

Order ( )log xα ( )log 1x +α  

0α  1 (1, 0) 1 0 * 
1α  α  (0, 1) 3 1 2 
2α  1α +  (1, 1) 3 2 1 

0 0 (0, 0) - * 0 
• Example: The construction of GF(8) 

Because 8 = 23, we seek a primitive polynomial in ( )[ ]GF 2 x  of degree 3. Let 

( ) 3 1p x x x= + + . Let α  be a root of p(x). This implies that ( )ord 7α =  and 
, i.e., . Then, 3 1 0α α+ + = 3 1α α= +



4 3 2α α α α α= ⋅ = +  
5 4 3 2 1 2α α α α α α α= ⋅ = + = + +  
6 5 3 2 2 21 1α α α α α α α α α α= ⋅ = + + = + + + = + . 

Exp. 
Rep. 

Poly. 
Rep. 

Vector-space
Rep. 

( )21, ,α α  
Order ( )log xα α ( )log 1x +  

0α  1 (1, 0, 0) 1 0 * 
1α  α  (0, 1, 0) 7 1 3 
2α  2α  (0, 0, 1) 7 2 6 
3α  1 α+  (1, 1, 0) 7 3 1 
4α  2α α+  (0, 1, 1) 7 4 5 
5α  21 α α+ +  (1, 1, 1) 7 5 4 
6α  21 α+  (1, 0, 1) 7 6 2 

0 0 (0, 0, 0) - * 0 

Note also that ( )32 7 1αGF  = GF(8). α  is a primitive element in = . 

• Example: The construction of GF(8) 
Let . Let ( ) 3 2 1p x x x= + + α  be a root of p(x). This implies that  
and . 

( )ord 7α =
3 2 1α α= +

Exp. 
Rep. 

Poly. 
Rep. Order ( )log xα ( )log 1xα +

0α  1 1 0 * 
1α  α  7 1 5 
2α  2α  7 2 3 
3α  2 1α +  7 3 2 
4α  2 1α α+ + 7 4 6 
5α  1α +  7 5 1 
6α  2α α+  7 6 4 

0 0 - * 0 

Note also that ( )32 7 1αGF  = GF(8). α  is a primitive element in = . 

• Example: The construction of GF(16) 
Let ( ) 4 1p x x x= + + . 

Exp. 
Rep. 

Poly. 
Rep. 

Vector-space
Rep. 

( )2 31, , ,α α α
Order ( )log xα α ( )log 1x +  

0 0 (0, 0, 0, 0) - * 0 
0α  1 (1, 0, 0, 0) 1 0 * 
1α  α  (0, 1, 0, 0) 15 1 4 



2α  2α  (0, 0, 1, 0) 15 2 8 
3α  3α  (0, 0, 0, 1) 5 3 14 
4α  1α +  (1, 1, 0, 0) 15 4 1 
5α  2α α+  (0, 1, 1, 0) 3 5 10 
6α  3 2α α+  (0, 0, 1, 1) 5 6 13 
7α  3 1α α+ +  (1, 1, 0, 1) 15 7 9 
8α  2 1α +  (1, 0, 1, 0) 15 8 2 
9α  3α α+  (0, 1, 0, 1) 5 9 7 
10α  2 1α α+ +  (1, 1, 1, 0) 3 10 5 
11α  3 2α α α+ +  (0, 1, 1, 1) 15 11 12 
12α  3 2 1α α α+ + +  (1, 1, 1, 1) 5 12 11 
13α  3 2 1α α+ +  (1, 0, 1, 1) 15 13 6 
14α  3 1α +  (1, 0, 0, 1) 15 14 3 

Remark: the order is easily find by ( ) ( )
15ord

gcd ,15
k

k
α = . 

This follows from a theorem, or can be intuitively shown here as follows: 

Consider, for example, 9α . We want to find ( ){ }9min 1
i

i
α = . This happens iff 

 i.e. 9 0mod15i ≡ 15 9i . But 3 = ( )gcd 15,9  which is a factor of 9 already divide 

15. So we only need 
( )
155

gcd 15,9
=  to divide i. The minimum of i for this to occur 

is i = 5. 
In this representation, the nonzero elements iα  which are also in  is the 

elements which satisfy 3 0 , i.e., 
( )GF 4

mod15i ≡ 15 3i . So, they are 0 5 10, ,α α α . Hence, 

( ) { }5 10GF 4 0,1, ,α α= . 

Euclidean Domains 

• A Euclidean domain is a set D with two binary operations “+” and “ ⋅ ” that satisfy the 
following: 
1. D forms a commutative ring with identity. 
2. Cancellation: if ab = bc, b ≠ 0, then a = c. 
3. Every element a ∈ D has an associated metric g(a) such that 

a) g(a) ≤  for all nonzero b ∈ D. (g a b⋅ )
b) For all nonzero a, b ∈ D, g(a) > g(b), there exist q and r such that a = qb + r 

with r = 0 or g(r) < g(b). 

• q is called the quotient and r the remainder.  



• g(0) is generally taken to be undefined, though a value of -∞ can be assigned if 
desired. 

• Examples of Euclidean Domains 
• The ring of integers under addition and multiplication with metric g(n) = |n| 

(absolute value). 
• ( )[ ]GF q x : the ring of polynomials over a finite field with metric 

. ( )( ) ( )( )degreeg f x f x=

• a is said to be a divisor of b (written a|b) if there exists c ∈ D such that a c . b⋅ =
• An element a is said to be a common divisor of a collection of elements 

{ }1 2, , , nb b b…  if a|bi for i = 1, …, n. 

• If d is a common divisor of the { }ib  and all other common divisors are less than d, 
then d is called the greatest common divisor (GCD) of the {bi}. 
•  ⇔ g is a common divisor of a and b, and (gcd ,g a= )b d∀  common divisor of a 

and b, d g . 

Euclid’s Algorithm 
• Euclid’s algorithm is a very fast method for finding the GCDs of sets of elements in 

Euclidean domains. 
• Euclid’s Algorithm: 

Let a, b be a pair of elements contained in a Euclidean domain D, where g(a) > g(b) 
Let the indexed variable ri take on the initial values r-1 = a and r0 = b. 
Proceed by using the following recursion formula 

If ri-1 ≠ 0, the define ri using 2 1i i ir q r− − ir− =  where ( ) ( )1i ig r g r −< . 

Repeat until . 0ir =

If , then . 0ir = ( )1 GCD ,ir a− = b

• Recursive system of equations: 

1 1a q b r= +  10 r b< <  

2 1 2b q r r= +  2 10 r r< <  

1 3 2r q r r= + 3  3 20 r r< <  

  

2 1n n n nr q r r− −= + 10 n nr r −< <

( )GCD , na b r= . 

• Example 



• GCD(336,54)  
  336 = 6(54) + 12 

 
 54 = 4(12) + 6 
 
 12 = 2(6) + 0 

GCD(336, 54) = 6 
 

• ( )5 3 4 2GCD 1, 1x x x x x x+ + + + + +  

 ( ) ( )

( ) ( )

( )( )

5 3 4 2 2

4 2 2 2

2

1 1 1

1 1 1

1 1 1 0

x x x x x x x x

x x x x x x

x x x

+ + + = + + + + +

+ + + = + + +

+ = + + +

 

( )5 3 4 2GCD 1, 1 1x x x x x x x+ + + + + + = +  
 

• . ( )( )1 21 1 1m m mD D D D D− −+ = + + + + +

• In a Euclidean domain, the remainder ri will always take on the value zero after a 
finite number of steps.  
The worst case: Euclid’s algorithm requires a maximal number of steps to complete 
when a and b are consecutive Fibonacci numbers. 

• . ( ) ( )( )GCD , , GCD GCD , ,a b c a b c=

• If { }1 2, , , nB b b b= …  is any finite subset of elements from a Euclidean domain D, then 

B has a GCD d which can be expressed as a linear combination k k
k

bλ∑ , where the 

coefficients { }i Dλ ⊂ . 

• The extended Version of Euclid’s Algorithm 
•  ⇔  2 1i i ir q r− −= + ir 2 1i i i ir r q r− −= − ( ) ( )1i ig r g r −<  

• , . 2 1i i i is s q s− −= − 2 1i i i it t q t− −= −

i ri qi si ti

-1 a - 1 0 

0 b - 0 1 

1 1r 1q 1q− 1  

2     

     

 ( )GCD ,a b  s t 

 0     
• Check: GC . ( )D ,a b sa tb= +

• Check: for all j, . j js a t b r+ = j



• The extended Version of Euclid’s Algorithm 
We wish to find s and t such that ( )GCD ,a b sa tb= + . 

1. A set of indexed variables { }, ,i i ir s t  is given the following initial conditions:  

1r a− = , , , 0r b= 1 1s− = 0 0s = , 1 0t− = , 0 1t = . 

2. If , then define  using 1 0ir − ≠ ir 2 1i i i ir r q r− −= − , ( ) ( )1i ig r g r −< . 

3. Compute using , where  is from step 2. is 2i i is q s− − 1− iq

4. Compute  using . it 2 1i i i it t q t− −= −

5. Repeat steps 2 through 4 until 0ir = . 

At this point  and (1 GCD ,ir a− = )b 11 1i i is a t b r− − −+ = . 

i ri qi si ti

-1 a - 1 0 

0 b - 0 1 

1 1r 1q 1 1q−  

2     

 
• Remark:  

• for all j, . j js a t b r+ = j

q s q−= − = − = 1 1 1 0 1 10 1t t q t q q−• , s s , 1 1a bq r= + 1 1 1 0 11 0 1 = − = − = − . 

• Observe that the initial conditions for si and ti is the identity matrix . 
1 0
0 1
⎡ ⎤
⎢ ⎥
⎣ ⎦

• If { }1 2, , , nB b b b= …  is any finite subset from a Euclidean domain D, then B has a gcd 

d which can be expressed as a linear combination k kbλ∑  where the coefficients 

{ }i Dλ ⊂  

Proof. Let { }{ }:k k iS bλ λ= ∑ D⊂

)
. Let d be the element in S with the smallest 

metric .  By definition, ( )(g d d S∈  ⇒ i id bλ=∑ . We will show that d 
is the GCD of the elements in B. 
If d does not divide some element ib B∈ , then we can write  
where . But 

ib qd r= +

( ) ( )g r g d< ir b qd= −  must be in S, since  and d are in S. 
This contradicts the minimality of the metric of d in S. Thus, d is a 
common divisor of all the elements in B. 

ib



Now let e by any other common divisor of the elements in B. We can then 
write  for each i ib q e′= ib B∈ . Then, i i i i i id b q e e qλ λ λ′ ′= = =∑ ∑ ∑ . So, 
d is a multiple of every common divisor and thus the GCD of all of the 
elements in B. 

• Let D be a Euclidean domain. Suppose that for , ,a b c D∈ , ( )a bc , but a and b are 

relatively prime. Show that a c . 

Proof.  ⇒  ( )gcd , 1a b = ∃ ,s t D∈  1sa tb+ = . ( )a bc  ⇒ bc aq=  for some 

.  ⇒ q D∈ 1sa tb+ = sac tbc c+ =  ⇒ sac taq c+ =  ⇒ . ( )a sc tq c+ =

• All finite Euclidean domains are fields. 
Proof. D forms a commutative ring with identity. Hence, only need to show the 

existence of unique multiplicative inverse. Let x D∈ . D  is finite; hence, 

the sequence  must repeat. ⇒ 2 3, , ,x x x … ∃ ,p q   such that q p> p qx x=  
⇒  ⇒ by cancellation, (p p q px x x −= ) 1q px − = . ⇒ ( )1 1q px x − − = , thus x 
has an inverse. 

• Example:  ( )GCD 256,108

ri qi si ti

256 - 1 0 

108 - 0 1 

140 2 1 -2 

28 2 -2 5 

12 1 3 -7 

4 2 -8 19

0    

(GCD 256,108)  = 4 = 256(-8) + 108(19) 

• Examples:  ( )5 3 4 2GCD 1, 1x x x x x x+ + + + + +

ri qi si ti

5 3 1x x x+ + + - 1 0 
4 2 1x x x+ + + - 0 1 

2 1x +  x 1 x 

1x +  x2 x2 3 1x +

0    



( )
( ) ( )(

5 3 4 2

2 5 3 3 4 2

GCD 1, 1 1

1 1

x x x x x x x

x x x x x x x x

+ + + + + + = +

)1= + + + + + + + +
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