Polynomials over Galois Field

- Consider polynomials whose coefficients are taken from prime-order finite fields.

Primitive polynomials and Galois fields of order $\boldsymbol{p}^{\boldsymbol{m}}$

- Let $\operatorname{GF}(q)[x]$ denote the collection of all polynomials $a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}$ of arbitrary degree with coefficients $\left\{a_{i}\right\}$ in the finite field $\operatorname{GF}(q)$.
- $\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}\right)+\left(b_{0}+b_{1} x+b_{2} x^{2}+\cdots+b_{n} x^{n}\right)$

$$
=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\left(a_{2}+b_{2}\right) x^{2}+\cdots+\left(a_{n}+b_{n}\right) x^{n} .
$$

- $\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}\right) \cdot\left(b_{0}+b_{1} x+b_{2} x^{2}+\cdots+b_{m} x^{m}\right)$ $=\left(a_{0} \cdot b_{0}\right)+\left[a_{1} \cdot b_{0}+a_{0} \cdot b_{1}\right] x^{1}+\left[a_{2} \cdot b_{0}+a_{1} \cdot b_{1}+a_{0} \cdot b_{2}\right] x^{2}+\cdots+\left(a_{n} \cdot b_{m}\right) x^{n+m}$.
The coefficient operations are performed using the operations for the field from which the coefficients were taken.
- Such a collection of polynomials forms a commutative ring with identity.
- Nonzero field elements are considered to be zero-degree polynomials.

The zero element, however, is not considered a polynomial at all, because most metrics used with Euclidean rings of polynomials are undefined for the zero element.

- Let α be a root of $f(x)$. Then, $f(x)\left|x^{n}-1 \Rightarrow \operatorname{ord}(\alpha)\right| n$.
- A polynomial $f(x)$ is irreducible in $\mathrm{GF}(q)[x]$ if $f(x)$ cannot be factored into a product of lower-degree polynomials in $\operatorname{GF}(q)[x]$.
- All of the roots have the same order.
- The set of all roots of $f(x)$ is one conjugacy class with respect to $\operatorname{GF}(q)$.
- $f(x) \mid x^{\operatorname{ord}(\alpha)}-1$, where $\operatorname{ord}(\alpha)$ is the order of any root of $f(x)$.
- A polynomial $f(x)$ is irreducible in $\mathrm{GF}(q)$ if $f(x)$ cannot be factored into a product of lower-degree polynomials in GF $(q)[x]$.
- A polynomial may be irreducible in one ring of polynomials, but reducible in another.
- In fact, every polynomial is reducible in some ring of polynomials. The term irreducible must thus be used only with respect to a specific ring of polynomials.
- Remark: In GF $(2)[x]$, if $f(x)$ has degree >1 and has an even number of terms, then it can't be irreducible. Because 1 is its root, and hence $x+1$ is one of its factor.
- Irreducible polynomials of degree n in GF(2)[x]

Degree	Irreducible polynomials
1	$x, x+1$
2	$x^{2}+x+1$ $x^{3}+0+x+1$, $x^{3}+x^{2}+0+1$
3	$x^{4}+0+0+x+1$, $x^{4}+x^{3}+0+0+1$, $x^{4}+x^{3}+x^{2}+x+1$
4	$x^{5}+0+0+x^{2}+0+1$, $x^{5}+0+x^{3}+0+0+1$, $x^{5}+\underbrace{x^{4}+x^{3}+x^{2}+x}+1$ the 4 middle terms is deleted.
5	

- Any irreducible $m^{\text {th }}$-degree polynomial $f(x) \in \operatorname{GF}(p)[x]$ must divide $x^{p^{m}-1}-1$.
- Remark for binary polynomials:
- $x^{n+1}+1=(x+1)\left(\sum_{i=0}^{n} x^{i}\right)$
- For n odd, $\sum_{i=0}^{n} x^{i}=\left(x^{n}+x^{n-1}\right)+\cdots+(x+1)=(x+1)\left(x^{n-1}+x^{n-3}+\cdots+1\right)$. It is clear that $(x+1)$ is a factor because $\left.\sum_{i=0}^{n} x^{i}\right|_{x=1}=0$. Also, observe that

$$
\sum_{i=0}^{2 k+1} x^{i}=(x+1)\left(\sum_{i=0}^{k} x^{2 i}\right) .
$$

- Binary polynomials that miss alternate terms are not irreducible
- Lowest degree term is $x \Rightarrow x$ is a factor.
- Lowest degree term is $1: \sum_{i=0}^{k} x^{2 k}$
- $x^{2}+1=(x+1)^{2}, x^{4}+x^{2}+1=\left(x^{2}+x+1\right)^{2} \cdot\left(\sum_{i=0}^{n} x^{i}\right)^{2}=\sum_{k=0}^{n} x^{2 k}$.

To see this, consider, $\left(x^{n+1}+1\right)^{2}=(x+1)^{2}\left(\sum_{i=0}^{n} x^{i}\right)^{2}$. Also,

$$
\left(x^{n+1}+1\right)^{2}=x^{2 n+2}+1=(x+1)\left(\sum_{i=0}^{2 n+1} x^{i}\right)=(x+1)^{2}\left(\sum_{i=0}^{n} x^{2 k}\right) .
$$

- $x^{4}+\underbrace{x^{3}+x^{2}+x}+1$ can't take just one of the middle terms because we left with even number of terms.
- $x^{5}+x+1=\left(x^{2}+x+1\right)\left(x^{3}+x^{2}+1\right)$
- All roots of an irreducible polynomial have the same order.
- Primitive polynomials: An irreducible polynomial $p(x) \in \mathrm{GF}(p)[x]$ of degree m is said to be primitive if $\min _{n \in \mathbb{N}}\left\{n: p(x) \mid x^{n}-1\right\}=p^{m}-1$.
- There are $\frac{\phi\left(2^{n}-1\right)}{n} \underline{\text { binary }}$ primitive polynomials of degree n.
- Primitive polynomials: An irreducible polynomial $p(x) \in \mathrm{GF}(p)[x]$ of degree m is said to be primitive if $\min _{n \in \mathbb{N}}\left\{n: p(x) \mid x^{n}-1\right\}=p^{m}-1$.
- There are $\frac{\phi\left(2^{n}-1\right)}{n}$ binary primitive polynomials of degree n.
- Given an irreducible polynomial of degree m, to test whether it is primitive, divide it from $x^{n}-1$ where $m<n<p^{m}-1$. If no such n gives 0 remainder, then it is primitive. (The case when $n=p^{m}-1$ is guaranteed to have 0 remainder.). If there exists $n, m<n<p^{m}-1$, such that the remainder is not 0 , then it is not primitive.
- Primitive polynomials are the minimal polynomials for primitive elements in a Galois field.
- Primitive polynomials of degree n in GF(2)[x]

Degree	Primitive polynomials
2	$x^{2}+x+1$
3	$x^{3}+0+x+1$, $x^{3}+x^{2}+0+1$
4	$x^{4}+0+0+x+1$, $x^{4}+x^{3}+0+0+1$
5	$x^{5}+0+0+x^{2}+0+1$, $x^{5}+0+x^{3}+0+0+1$, $x^{5}+\underbrace{x^{4}+x^{3}+x^{2}+x}+1$ the 4 middle terms is deleted.

- Remark:
- A primitive polynomial $p(x) \in \mathrm{GF}(p)[x]$ is always irreducible in $\mathrm{GF}(p)[x]$ (by definition), but irreducible polynomials are not always primitive.
- All irreducible polynomials in $\mathrm{GF}(2)[x]$ of degree $2,3,5$ are primitive.
- $x^{4}+x^{3}+x^{2}+x+1$ is irreducible but not primitive in $\operatorname{GF}(2)[x]$.

$$
\min _{n \in \mathbb{N}}\left\{n: x^{4}+x^{3}+x^{2}+x+1 \mid x^{n}-1\right\}=5 .
$$

- The root α of an $m^{\text {th }}$-degree primitive polynomial $p(x) \in \mathrm{GF}(p)[x]$
- Is also be a root of $x^{p^{m}-1}-1$
- have order $p^{m}-1$. (and hence, is a primitive element in $\operatorname{GF}\left(p^{m}\right)$)
- $\quad p^{m}-1$ consecutive powers of α form a multiplicative group of order $p^{m}-1$.
- Let α be a nonzero root of $f(x)$. Then, $f(x)\left|x^{n}-1 \Rightarrow \operatorname{ord}(\alpha)\right| n$.

Proof. Because α be a root of $f(x)$, we have $f(\alpha)=0$. Because $f(x) \mid x^{n}-1$, we also have $\alpha^{n}-1=0$. Recall that $\alpha^{n}=1 \Leftrightarrow \operatorname{ord}(\alpha) \mid n$.

- Let α_{i} 's be roots of an irreducible polynomial $f(x)$, then $\left.f(x)\right|^{\operatorname{ord}(\alpha)}-1$, where $\operatorname{ord}(\alpha)$ is the order of any root of $f(x)$.

Proof. Because all roots of an irreducible polynomial have the same order, $\forall i$ $\left(\alpha_{i}\right)^{\operatorname{ord}(\alpha)}=1$. So, all roots of $f(x)$ are also roots of $x^{\operatorname{ord}(\alpha)}-1$.

- If α is a root of an $m^{\text {th }}$-degree primitive polynomial $p(x) \in \operatorname{GF}(p)[x]$, then
- $\quad \alpha$ must also be a root of $x^{p^{m}-1}-1$ and $\operatorname{ord}(\alpha) \mid p^{m}-1$.

Proof. By definition, $p(x) \mid x^{p^{m}-1}-1$.

- Let β be any root of $x^{\text {ord }(\alpha)}-1$, then β is a root of $x^{p^{m}-1}-1$.

Proof. We have $\beta^{\operatorname{ord}(\alpha)}=1$. Next, note that $\beta^{p^{m}-1}=\left(\beta^{\operatorname{ord}(\alpha)}\right)^{k}$ where $k \in \mathbb{N}$ because ord $(\alpha) \mid p^{m}-1$. Hence, $\beta^{p^{m}-1}=1^{k}=1$.

- $x^{\operatorname{ord}(\alpha)}-1 \mid x^{p^{m}-1}-1$

Proof. Because all roots of $x^{\operatorname{ord}(\alpha)}-1$ are the roots of $x^{p^{m}-1}-1$.

- The root α of an $m^{\text {th }}$-degree primitive polynomial $p(x) \in \mathrm{GF}(p)[x]$ have order $p^{m}-1$. (and hence, is a primitive element in $\operatorname{GF}\left(p^{m}\right)$)

Proof. Let α be an arbitrary root of $p(x)$. We know that $x^{\operatorname{ord}(\alpha)}-1 \mid x^{p^{m}-1}-1$. We also have $p(x) \mid x^{\operatorname{ord}(\alpha)}-1$ because $p(x)$ is irreducible. Because $p(x)$ is primitive, $p^{m}-1=\min _{n \in \mathbb{N}}\left\{n: p(x) \mid x^{n}-1\right\}$. So, ord $(\alpha) \geq p^{m}-1$. But from $x^{\operatorname{ord}(\alpha)}-1 \mid x^{p^{m}-1}-1$, we have $\operatorname{ord}(\alpha) \leq p^{m}-1$. So, $\operatorname{ord}(\alpha)=p^{m}-1$.

- Given that α has order $p^{m}-1$, then the $p^{m}-1$ consecutive powers of α form a multiplicative group of order $p^{m}-1$.
The multiplication operation is performed by adding the exponents of the powers of α modulo ($p^{m}-1$).
- Let $p(x)=x^{m}+a_{m-1} x^{m-1}+\cdots+a_{1} x+a_{0}$ be primitive in $\operatorname{GF}(p)[x]$. If α is a root of $p(x)$, it must satisfy $p(\alpha)=\alpha^{m}+a_{m-1} \alpha^{m-1}+\cdots+a_{1} \alpha+a_{0}=0$. It follows that

$$
\alpha^{m}=\left(-a_{m-1}\right) \alpha^{m-1}+\cdots+\left(-a_{1}\right) \alpha+\left(-a_{0}\right) 1 .
$$

The individual powers of α of degree greater than or equal to m can be reexpressed as polynomials in α of degree ($m-1$) or less.
Since ord $(\alpha)=p^{m}-1$, the distinct powers of α must have $p^{m}-1$ distinct nonzero polynomial representations of the form $b_{m-1} \alpha^{m-1}+\cdots+b_{1} \alpha+b_{0}$. The coefficients $\left\{b_{i}\right\}$ are taken from $\mathrm{GF}(p)$. So, there are $p^{m}-1$ distinct nonzero polynomial representations available. A bijective mapping is then defined between the distinct powers of α and the set of polynomials in α of degree less than or equal to ($m-1$) with coefficients in $\operatorname{GF}(p)$.

- Construction of $\operatorname{GF}\left(p^{m}\right)$:

Let α be a root of an $m^{\text {th }}$-degree primitive polynomial $p(x) \in \mathrm{GF}(p)[x]$. Then $\operatorname{ord}(\alpha)=p^{m}-1$ and the $p^{m}-1$ consecutive powers of $\alpha\left(\alpha^{0}, \alpha^{1}, \ldots, \alpha^{\operatorname{ord}(\alpha)-1}\right)$ are the nonzero elements of the field $\operatorname{GF}\left(p^{m}\right)$. Also, can express any power of α (exponential representation) (or even any polynomials in α) as $b_{m-1} \alpha^{m-1}+\cdots+b_{1} \alpha+b_{0}$ (polynomial representation).

- $\quad \operatorname{ord}\left(\alpha^{i}\right)=\frac{q-1}{\operatorname{gcd}(i, q-1)}, q=p^{m}$.
- Construction of $\operatorname{GF}\left(p^{m}\right)$:

Let α be a root of an $m^{\text {th }}$-degree primitive polynomial $p(x) \in \operatorname{GF}(p)[x]$. Then

- $\quad \operatorname{ord}(\alpha)=p^{m}-1$.
- The $p^{m}-1$ consecutive powers of $\alpha\left(\alpha^{0}, \alpha^{1}, \ldots, \alpha^{\operatorname{ord}(\alpha)-1}\right)$ are the nonzero elements of the field GF $\left(p^{m}\right)$.
- Can express $\alpha^{m}=\left(-a_{m-1}\right) \alpha^{m-1}+\cdots+\left(-a_{1}\right) \alpha+\left(-a_{0}\right) 1 . \Rightarrow$ Can express any power of α (exponential representation) (or even any polynomials in α) as $b_{m-1} \alpha^{m-1}+\cdots+b_{1} \alpha+b_{0}$ (polynomial representation).
- Can define bijective mapping between the distinct powers of α and the set of nonzero polynomials in α of degree less than or equal to $(m-1)$ with coefficients in $\operatorname{GF}(p)$.
- Addition is performed using the polynomial representation. One begins by substituting the polynomial representations for the exponential representations. The polynomials are then summed to obtain a third polynomial representation, which may then be reexpressed as a power of α.
- Multiplication is performed through the use of exponential representation. The exponents of the two elements being multiplied together are added together modulo $p^{m}-1$.
- Multiplication can also be performed through the polynomial representation. If α^{a} and α^{b} have the polynomial representations $p_{a}(\alpha)$ and $p_{b}(\alpha)$, respectively, then $\alpha^{(a+b) \bmod \left(p^{m}-1\right)}$ has polynomial representation $p_{a}(\alpha) p_{b}(\alpha)$ modulo $p(\alpha)$.
- The polynomial representation for a finite field GF $\left(p^{m}\right)$ has coefficients in the "ground field" $\operatorname{GF}(p)$. Clearly $\operatorname{GF}\left(p^{m}\right)$ can thus be interpreted as a vector space over $\mathrm{GF}(p)$. The set $\left\{1, \alpha, \ldots, \alpha^{m-1}\right\}$ can be used as a basis for the vector space.
- Let $\beta \in \mathrm{GF}\left(2^{m}\right)$, then $-\beta=\beta$.

Proof. $\beta+\beta=\beta(1+1)$. Note that $1 \in \mathrm{GF}(2)$, hence $1+1=0$. Therefore, $\beta+\beta=\beta 0=0$.

Zech's logarithms

- Except in the prime-order field case, $\mathrm{GF}(q)$ addition is not as easy to implement as multiplication. The simplest (though least efficient) approach is to construct a $(q \times q)$ look-up table. A more efficient use of memory can be obtained through the use of Zech's logarithms, also known as "add-one tables."
- An add-one tables has two columns:

The first contains the logarithm of each element with respect to a primitive element α. $\left(\log _{\alpha}(x)\right)$
The second column contains the logarithm to the base α of the corresponding element in the first column after it has been incremented by one. $\left(\log _{\alpha}(x+1)\right)$

- $\quad * \rightarrow 0: \log _{\alpha} 0=* . \log _{\alpha}(0+1)=\log _{\alpha} 1=0$.

In $\operatorname{GF}\left(2^{m}\right): 0 \leftrightarrow *^{*} .(1+1=0)$

- $\quad \log _{\alpha} \alpha^{i} \equiv i \bmod \operatorname{ord}(\alpha)$
- Check:
- For $\operatorname{GF}\left(2^{m}\right)$, note that $\alpha^{j}+1=\alpha^{k} \Leftrightarrow \alpha^{k}+1=\alpha^{j}$ because $-1=1$. So, also works in pair $j \leftrightarrow k$.
- We stop at α^{q-2}. But can check by calculate whether $\alpha \alpha^{q-2}=\alpha^{q-1}=1$.
- Addition in $\operatorname{GF}\left(p^{m}\right)$ is then performed using the following scheme:
- Combine all terms that have the same exponent using modular addition of the exponents (i.e., GF (p) addition of the "coefficients")
- Arrange the resulting expression $\alpha^{a}+\alpha^{b}+\cdots+\alpha^{z}$ in order of decreasing exponents.
- Factor the expression into the form $\left(\ldots\left(\left(\left(\alpha^{a-b}+1\right) \alpha^{b-c}+1\right) \alpha^{c-d}+1\right) \cdots\right) \alpha^{z}$.

The summation can now be performed as a series of add-one operations and Galois field multiplications.

- $\alpha^{a}+\alpha^{b}+\alpha^{c}+\alpha^{d}=\left(\alpha^{a-b}+1\right) \alpha^{b}+\alpha^{c}+\alpha^{d}=\left(\left(\alpha^{a-b}+1\right) \alpha^{b-c}+1\right) \alpha^{c}+\alpha^{d}$

$$
=\left(\left(\left(\alpha^{a-b}+1\right) \alpha^{b-c}+1\right) \alpha^{c-d}+1\right) \alpha^{d}
$$

- $\alpha^{a}+\alpha^{b}+\alpha^{c}+1=\left(\left(\alpha^{a-b}+1\right) \alpha^{b-c}+1\right) \alpha^{c-d}+1$
- Example: The construction of GF(4)

Because $4=2^{2}$, we seek a primitive polynomial in GF(2)[x] of degree 2. Let $p(x)=x^{2}+x+1$. Let α be a root of $p(x)$. This implies that ord $(\alpha)=3$ and $\alpha^{2}+\alpha+1=0$, i.e., $\alpha^{2}=\alpha+1$. Then,

Exp. Rep.	Poly. Rep.	Vector-space Rep. $(1, \alpha)$	Order	$\log _{\alpha}(x)$	$\log _{\alpha}(x+1)$
α^{0}	1	$(1,0)$	1	0	$*$
α^{1}	α	$(0,1)$	3	1	2
α^{2}	$\alpha+1$	$(1,1)$	3	2	1
0	0	$(0,0)$	-	$*$	0

- Example: The construction of GF(8)

Because $8=2^{3}$, we seek a primitive polynomial in $\operatorname{GF}(2)[x]$ of degree 3. Let $p(x)=x^{3}+x+1$. Let α be a root of $p(x)$. This implies that $\operatorname{ord}(\alpha)=7$ and $\alpha^{3}+\alpha+1=0$, i.e., $\alpha^{3}=\alpha+1$. Then,

$$
\begin{aligned}
& \alpha^{4}=\alpha^{3} \cdot \alpha=\alpha^{2}+\alpha \\
& \alpha^{5}=\alpha^{4} \cdot \alpha=\alpha^{3}+\alpha^{2}=\alpha+1+\alpha^{2} \\
& \alpha^{6}=\alpha^{5} \cdot \alpha=\alpha^{3}+\alpha^{2}+\alpha=\alpha+1+\alpha^{2}+\alpha=\alpha^{2}+1 .
\end{aligned}
$$

Exp. Rep.	Poly. Rep.	Vector-space Rep. $\left(1, \alpha, \alpha^{2}\right)$	Order	$\log _{\alpha}(x)$	$\log _{\alpha}(x+1)$
α^{0}	1	$(1,0,0)$	1	0	$*$
α^{1}	α	$(0,1,0)$	7	1	3
α^{2}	α^{2}	$(0,0,1)$	7	2	6
α^{3}	$1+\alpha$	$(1,1,0)$	7	3	1
α^{4}	$\alpha+\alpha^{2}$	$(0,1,1)$	7	4	5
α^{5}	$1+\alpha+\alpha^{2}$	$(1,1,1)$	7	5	4
α^{6}	$1+\alpha^{2}$	$(1,0,1)$	7	6	2
0	0	$(0,0,0)$	-	$*$	0

Note also that α is a primitive element in $\operatorname{GF}\left(2^{3}\right)=\operatorname{GF}(8) . \alpha^{7}=1$.

- Example: The construction of GF(8)

Let $p(x)=x^{3}+x^{2}+1$. Let α be a root of $p(x)$. This implies that $\operatorname{ord}(\alpha)=7$ and $\alpha^{3}=\alpha^{2}+1$.

Exp. Rep.	Poly. Rep.	Order	$\log _{\alpha}(x)$	$\log _{\alpha}(x+1)$
α^{0}	1	1	0	$*$
α^{1}	α	7	1	5
α^{2}	α^{2}	7	2	3
α^{3}	$\alpha^{2}+1$	7	3	2
α^{4}	$\alpha^{2}+\alpha+1$	7	4	6
α^{5}	$\alpha+1$	7	5	1
α^{6}	$\alpha^{2}+\alpha$	7	6	4
0	0	-	$*$	0

Note also that α is a primitive element in $\operatorname{GF}\left(2^{3}\right)=\mathrm{GF}(8) . \alpha^{7}=1$.

- Example: The construction of GF(16)

Let $p(x)=x^{4}+x+1$.

Exp. Rep.	Poly. Rep.	Vector-space Rep. $\left(1, \alpha, \alpha^{2}, \alpha^{3}\right)$	Order	$\log _{\alpha}(x)$	$\log _{\alpha}(x+1)$
0	0	$(0,0,0,0)$	-	$*$	0
α^{0}	1	$(1,0,0,0)$	1	0	$*$
α^{1}	α	$(0,1,0,0)$	15	1	4

α^{2}	α^{2}	$(0,0,1,0)$	15	2	8
α^{3}	α^{3}	$(0,0,0,1)$	5	3	14
α^{4}	$\alpha+1$	$(1,1,0,0)$	15	4	1
α^{5}	$\alpha^{2}+\alpha$	$(0,1,1,0)$	3	5	10
α^{6}	$\alpha^{3}+\alpha^{2}$	$(0,0,1,1)$	5	6	13
α^{7}	$\alpha^{3}+\alpha+1$	$(1,1,0,1)$	15	7	9
α^{8}	$\alpha^{2}+1$	$(1,0,1,0)$	15	8	2
α^{9}	$\alpha^{3}+\alpha$	$(0,1,0,1)$	5	9	7
α^{10}	$\alpha^{2}+\alpha+1$	$(1,1,1,0)$	3	10	5
α^{11}	$\alpha^{3}+\alpha^{2}+\alpha$	$(0,1,1,1)$	15	11	12
α^{12}	$\alpha^{3}+\alpha^{2}+\alpha+1$	$(1,1,1,1)$	5	12	11
α^{13}	$\alpha^{3}+\alpha^{2}+1$	$(1,0,1,1)$	15	13	6
α^{14}	$\alpha^{3}+1$	$(1,0,0,1)$	15	14	3

Remark: the order is easily find by ord $\left(\alpha^{k}\right)=\frac{15}{\operatorname{gcd}(k, 15)}$.
This follows from a theorem, or can be intuitively shown here as follows: Consider, for example, α^{9}. We want to find $\min _{i}\left\{\left(\alpha^{9}\right)^{i}=1\right\}$. This happens iff $9 i \equiv 0 \bmod 15$ i.e. $15 \mid 9 i$. But $3=\operatorname{gcd}(15,9)$ which is a factor of 9 already divide 15. So we only need $5=\frac{15}{\operatorname{gcd}(15,9)}$ to divide i. The minimum of i for this to occur is $i=5$.
In this representation, the nonzero elements α^{i} which are also in GF (4) is the elements which satisfy $3 i \equiv 0 \bmod 15$, i.e., $15 \mid 3 i$. So, they are $\alpha^{0}, \alpha^{5}, \alpha^{10}$. Hence, $G F(4)=\left\{0,1, \alpha^{5}, \alpha^{10}\right\}$.

Euclidean Domains

- A Euclidean domain is a set D with two binary operations "+" and "." that satisfy the following:

1. D forms a commutative ring with identity.
2. Cancellation: if $a b=b c, b \neq 0$, then $a=c$.
3. Every element $a \in D$ has an associated metric $g(a)$ such that
a) $g(a) \leq g(a \cdot b)$ for all nonzero $b \in D$.
b) For all nonzero $a, b \in D, g(a)>g(b)$, there exist q and r such that $a=q b+r$ with $r=0$ or $g(r)<g(b)$.

- $\quad q$ is called the quotient and r the remainder.
- $g(0)$ is generally taken to be undefined, though a value of $-\infty$ can be assigned if desired.
- Examples of Euclidean Domains
- The ring of integers under addition and multiplication with metric $g(n)=|n|$ (absolute value).
- $\operatorname{GF}(q)[x]$: the ring of polynomials over a finite field with metric $g(f(x))=\operatorname{degree}(f(x))$.
- $\quad a$ is said to be a divisor of b (written $a \mid b$) if there exists $c \in D$ such that $a \cdot c=b$.
- An element a is said to be a common divisor of a collection of elements $\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ if $a \mid b_{i}$ for $i=1, \ldots, n$.
- If d is a common divisor of the $\left\{b_{i}\right\}$ and all other common divisors are less than d, then d is called the greatest common divisor (GCD) of the $\left\{b_{i}\right\}$.
- $\quad g=\operatorname{gcd}(a, b) \Leftrightarrow g$ is a common divisor of a and b, and $\forall d$ common divisor of a and $b, d \mid g$.

Euclid's Algorithm

- Euclid's algorithm is a very fast method for finding the GCDs of sets of elements in Euclidean domains.

- Euclid's Algorithm:

Let a, b be a pair of elements contained in a Euclidean domain D, where $g(a)>g(b)$
Let the indexed variable r_{i} take on the initial values $r_{-1}=a$ and $r_{0}=b$.
Proceed by using the following recursion formula
If $r_{i-1} \neq 0$, the define r_{i} using $r_{i-2}-q_{i} r_{i-1}=r_{i}$ where $g\left(r_{i}\right)<g\left(r_{i-1}\right)$.
Repeat until $r_{i}=0$.
If $r_{i}=0$, then $r_{i-1}=\operatorname{GCD}(a, b)$.

- Recursive system of equations:

$a=q_{1} b+r_{1}$	$0<r_{1}<b$
$b=q_{2} r_{1}+r_{2}$	$0<r_{2}<r_{1}$
$r_{1}=q_{3} r_{2}+r_{3}$	$0<r_{3}<r_{2}$
\vdots	\vdots
$r_{n-2}=q_{n} r_{n-1}+r_{n}$	$0<r_{n}<r_{n-1}$

$\operatorname{GCD}(a, b)=r_{n}$.

- Example
- $\operatorname{GCD}(336,54)$

- $\operatorname{GCD}\left(x^{5}+x^{3}+x+1, x^{4}+x^{2}+x+1\right)$

- $\quad D^{m}+1=(D+1)\left(D^{m-1}+D^{m-2}+\cdots+D+1\right)$.
- In a Euclidean domain, the remainder r_{i} will always take on the value zero after a finite number of steps.
The worst case: Euclid's algorithm requires a maximal number of steps to complete when a and b are consecutive Fibonacci numbers.
- $\operatorname{GCD}(a, b, c)=\operatorname{GCD}(\operatorname{GCD}(a, b), c)$.
- If $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ is any finite subset of elements from a Euclidean domain D, then B has a GCD d which can be expressed as a linear combination $\sum_{k} \lambda_{k} b_{k}$, where the coefficients $\left\{\lambda_{i}\right\} \subset D$.
- The extended Version of Euclid's Algorithm
- $r_{i-2}=q_{i} r_{i-1}+r_{i} \Leftrightarrow r_{i}=r_{i-2}-q_{i} r_{i-1} g\left(r_{i}\right)<g\left(r_{i-1}\right)$
- $s_{i}=s_{i-2}-q_{i} s_{i-1}, t_{i}=t_{i-2}-q_{i} t_{i-1}$.

i	r_{i}	q_{i}	s_{i}	t_{i}	
-1	a	-	1	0	
0	b	-	0	1	
1	r_{1}	q_{1}	1	$-q_{1}$	
2					
	$\operatorname{GCD}(a, b)$		s	t	
	0				

- Check: $\operatorname{GCD}(a, b)=s a+t b$.
- Check: for all $j, s_{j} a+t_{j} b=r_{j}$.
- The extended Version of Euclid’s Algorithm

We wish to find s and t such that $\operatorname{GCD}(a, b)=s a+t b$.

1. A set of indexed variables $\left\{r_{i}, s_{i}, t_{i}\right\}$ is given the following initial conditions:

$$
r_{-1}=a, r_{0}=b, s_{-1}=1, s_{0}=0, t_{-1}=0, t_{0}=1
$$

2. If $r_{i-1} \neq 0$, then define r_{i} using $r_{i}=r_{i-2}-q_{i} r_{i-1}, g\left(r_{i}\right)<g\left(r_{i-1}\right)$.
3. Compute s_{i} using $s_{i-2}-q_{i} s_{i-1}$, where q_{i} is from step 2 .
4. Compute t_{i} using $t_{i}=t_{i-2}-q_{i} t_{i-1}$.
5. Repeat steps 2 through 4 until $r_{i}=0$.

At this point $r_{i-1}=\operatorname{GCD}(a, b)$ and $s_{i-1} a+t_{i-1} b=r_{i-1}$.

i	r_{i}	q_{i}	s_{i}	t_{i}	
-1	a	-	1	0	
0	b	-	0	1	
1	r_{1}	q_{1}	1	$-q_{1}$	
2					

- Remark:
- for all $j, s_{j} a+t_{j} b=r_{j}$.
- $\quad a=b q_{1}+r_{1}, s_{1}=s_{-1}-q_{1} s_{0}=1-q_{1} 0=1, t_{1}=t_{-1}-q_{1} t_{0}=0-q_{1} 1=-q_{1}$.
- Observe that the initial conditions for s_{i} and t_{i} is the identity matrix $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.
- If $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ is any finite subset from a Euclidean domain D, then B has a gcd d which can be expressed as a linear combination $\sum \lambda_{k} b_{k}$ where the coefficients $\left\{\lambda_{i}\right\} \subset D$

Proof. Let $S=\left\{\sum \lambda_{k} b_{k}:\left\{\lambda_{i}\right\} \subset D\right\}$. Let d be the element in S with the smallest metric $(g(d))$. By definition, $d \in S \Rightarrow d=\sum \lambda_{i} b_{i}$. We will show that d is the GCD of the elements in B.
If d does not divide some element $b_{i} \in B$, then we can write $b_{i}=q d+r$ where $g(r)<g(d)$. But $r=b_{i}-q d$ must be in S, since b_{i} and d are in S. This contradicts the minimality of the metric of d in S. Thus, d is a common divisor of all the elements in B.

Now let e by any other common divisor of the elements in B. We can then write $b_{i}=q_{i}^{\prime} e$ for each $b_{i} \in B$. Then, $d=\sum \lambda_{i} b_{i}=\sum \lambda_{i} q_{i}^{\prime} e=e \sum \lambda_{i} q_{i}^{\prime}$. So, d is a multiple of every common divisor and thus the GCD of all of the elements in B.

- Let D be a Euclidean domain. Suppose that for $a, b, c \in D, a \mid(b c)$, but a and b are relatively prime. Show that $a \mid c$.

Proof. $\operatorname{gcd}(a, b)=1 \Rightarrow \exists s, t \in D \quad s a+t b=1 . a \mid(b c) \Rightarrow b c=a q$ for some $q \in D . s a+t b=1 \Rightarrow s a c+t b c=c \Rightarrow s a c+t a q=c \Rightarrow a(s c+t q)=c$.

- All finite Euclidean domains are fields.

Proof. D forms a commutative ring with identity. Hence, only need to show the existence of unique multiplicative inverse. Let $x \in D .|D|$ is finite; hence, the sequence x, x^{2}, x^{3}, \ldots must repeat. $\Rightarrow \exists p, q q>p$ such that $x^{p}=x^{q}$ $\Rightarrow x^{p}=x^{p}\left(x^{q-p}\right) \Rightarrow$ by cancellation, $x^{q-p}=1 . \Rightarrow x\left(x^{q-p-1}\right)=1$, thus x has an inverse.

- Example: $\operatorname{GCD}(256,108)$

r_{i}	q_{i}	s_{i}	t_{i}
256	-	1	0
108	-	0	1
140	2	1	-2
28	2	-2	5
12	1	3	-7
4	2	-8	19
0			

$\operatorname{GCD}(256,108)=4=256(-8)+108(19)$

- Examples: $\operatorname{GCD}\left(x^{5}+x^{3}+x+1, x^{4}+x^{2}+x+1\right)$

r_{i}	q_{i}	s_{i}	t_{i}
$x^{5}+x^{3}+x+1$	-	1	0
$x^{4}+x^{2}+x+1$	-	0	1
$x^{2}+1$	x	1	x
$x+1$	x^{2}	x^{2}	$x^{3}+1$
0			

$$
\begin{aligned}
\operatorname{GCD}\left(x^{5}+x^{3}+x+1, x^{4}+x^{2}+x+1\right) & =x+1 \\
& =x^{2}\left(x^{5}+x^{3}+x+1\right)+\left(x^{3}+1\right)\left(x^{4}+x^{2}+x+1\right)
\end{aligned}
$$

